

MLS Overview: Instrument Performance and Data Products

Joe Waters

Aura Science Team Meeting

The Hague, Netherlands 8 November 2005

MLS major milestones since launch

Began full-up science observations13 Aug 04
Began production processing with updated Version 1.51 algorithms
Began making V1.51 Level 2 data publicly available
Released MLS Data Quality Document for V1.51 ('required reading' for data users)
Completed V1.51 reprocessing of all 'old' data, (continue processing all new incoming data) 25 Oct 05
Goal for beginning production processing with Version 2 algorithms

MLS Instrument Performance

- > Instrument performance has been excellent overall
 - In full-up science mode since 13 August 2004
 - No major problems have been encountered
- Calibration accuracy is ~1% for the GHz bands and ~2% for the THz bands, documented in IEEE papers:
 - Jarnot, et al.: GHz radiometric and spectral cal & performance
 - Cofield and Stek: GHz field-of-view cal & performance
 - Pickett: THz cal & performance
- Following chart shows examples of performance

Instrument Performance Examples and Level 2 Retrieval Residuals

Measured Signal (at 26 km tan ht)

Baseline Artifact (1000x scale of signal)

Retrieval Residuals (100x scale of signal)

206 GHz O₃ (band 6)

626 GHz HCI (band 13)

Vertical bars (not visible in most cases) give the predicted noise for the averages shown here Equivalent integration time is ~10 minutes for signal and residual, ~1 hour for baseline

MLS Daily Ops Calendar: 13 Aug 04 – 31 Oct 05

- Colors show fraction of total time each 24 hours that has good data from all MLS spectral bands
 - 94% since start of science ops on 13 Aug 04
 - 98% since instrument ops stabilized on 11 Dec 04

>99% 100% 90-99% <90% (planned) <90% (MLS ops problem)

All data processed through Level 2 for all products

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
4						13	14
Aug'04	15	16	17	18	19	20	21
A	22	23	24	25	26	27	28
	29	30	31	1	2	3	4
	5	6	7	8	9	10	11
Sep'04	12	13	14	15	16	17	18
Sel	19	20	21	22	23	24	25
	26	27	28	29	30	1	2
	3	4	5	6	7	ω	9
Oct'04	10	11	12	13	14	15	16
ő	17	18	19	20	21	22	23
	24	25	26	27	28	29	30
	31	1	2	3	4	5	6
4	7	8	9	10	11	12	13
Nov'04	14	15	16	17	18	19	20
Z	21	22	23	24	25	26	27
	28	29	30	1	2	3	4
_	5	6	7	8	9	10	11
Dec '04	12	13	14	15	16	17	18
De	19	20	21	22	23	24	25
	26	27	28	29	30	31	1

	Sun	Mon	iue	wed	יח	ŀΠ	Sat
	2	3	4	5	6	7	8
Jan'05	ø	10	11	12	13	14	15
Jar	16	17	18	19	20	21	22
	23	24	25	26	27	28	29
	30	31	1	2	3	4	5
Feb'-05	6	7	ω	σ	10	11	12
Feb	13	14	15	16	17	18	19
	20	21	22	23	24	25	26
	27	28	1	2	თ	4	15
5	6	7	ω	ø,	10	11	12
Mar'05	13	14	15	16	17	18	19
2	20	21	22	23	24	25	26
	27	28	29	30	31	1	2
	з	4	5	6	7	ω	ø
Apr'05	10	11	12	13	14	15	16
Αp	17	18	19	20	21	22	23
	24	25	26	27	28	29	30
	1	2	3	4	5	6	7
52	8	9	10	11	12	13	14
May '05	15	16	17	18	19	20	21
2	22	23	24	25	26	27	28
	29	30	31	1	2	3	4

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
	5	6	7	8	ø,	10	11
Jun'05	12	13	14	15	16	17	18
μ	19	20	21	22	23	24	25
	26	27	28	29	30	1	2
	3	4	15	6	7	8	ø
Jul'05	10	11	12	13	14	15	16
3	17	18	19	20	21	22	23
	24	25	26	27	28	29	30
	31	1	2	3	4	5	6
22	7	8	9	10	11	12	13
Aug'05	14	15	16	17	18	19	20
A	21	22	23	24	25	26	27
	28	29	30	31	1	2	3
	4	5	6	7	ω	9	10
Sep'05	11	12	13	14	15	16	17
Sep	18	19	20	21	22	23	24
	25	26	27	28	29	30	1
	2	з	4	5	6	7	ω
22	9	10	11	12	13	14	15
Oct'05	16	17	18	19	20	21	22
0	23	24	25	26	27	28	29
	30	31					

MLS Geophysical Data Products

Lines are for V1.51 data, where thin lines indicate averages are always needed Standard vertical grid for V1.51 is 6 per decade P for P > 0.1 hPa, 3 per decade for P < 0.1 hPa, and cloud ice has 12 per decade P

Dots indicate goals for future versions of data

- MLS data quality document should be read & understood before using data
- Register at http://mls.jpl.nasa.gov to receive updates of information on data

MLS V1.51 Data

- ➤ All MLS V1.51 data products are publicly available for the entire Aura mission to date
 - from http://disc.gsfc.nasa.gov/data/dataset/MLS (GSFC DAAC)
- > First phase of data validation has been completed
 - Overview for T, O₃, H₂O, HCI, N₂O, HNO₃, and CO are in Froidevaux, et al., 'MLS Early Validation' paper, IEEE Aura issue, in press.
 - > preprint available from http://mls.jpl.nasa.gov (MLS web site)
 - Additional validation results are in presentations given at the September 2005 Aura Data Validation meeting
 - > available at http://avdc.gsfc.nasa.gov (Aura Validation Data Center)
- > Following charts give some representative examples of data

MLS O₃ data

- ➢ Many comparisons of stratospheric O₃ have been made
 - MLS generally agrees to 5-10% with other validated accurate data sets
 - Some examples are at right
 - Slope of MLS differences with height is under investigation
- Fewer comparisons of tropospheric O₃ have been possible
 - Plot at right shows MLS O₃ at 100, 147, and 215 hPa scattered against co-located AVE aircraft measurements made with NOAA photometer
 - These, and other comparisons, suggest that MLS V1.51 UT O₃ has a scaling error of ~ +25% and a bias of ~ +50 ppbv

Froidevaux, et al. IEEE, in press

Ray Wang, et al. Sep 05 Aura Val

Mark Filipiak, Sep 05 Aura Val

MLS OH data

- ➤ MLS OH (and HO₂) and correlative balloon measurements agree to within error bars
 - MLS observations show no evidence for MLS. the "HO, dilemma" seen by MAHRSI balloon. model
 - See Pickett et al. GRL paper, and Salawitch et al. poster this meeting

comparisons

- > Solar-proton enhanced OH (and HO₂) in mesosphere seen in 4 events to date
 - Associated O₃ loss also detected
 - See Pickett paper at this meeting

Enhanced mesospheric OH on 18 Jan 05

- Now investigating annual cycle variation seen in OH
 - Not yet sure whether observed variation at lowest altitudes (46 hPa) is real or is an artifact

Monthly zonal mean OH at equator

Suite of Daily MLS Stratospheric Data

Shown here in equivalent lat / potential temperature coords

(plot by Gloria Manney, available at http://mls.jpl.nasa.gov for each day of data)

example here is for Sep 21 2005

vertical axis is potential temperature, from 390 K to 1800 K (~15-50 km)

horizontal axis is equivalent latitude, from 80S to 80N

white overlays are scaled potential vorticity

Examples of N_2O and HNO_3 data at $\theta = 490K$ Selected days: 26 Sep 2004 through 1 Apr 2005

white contours are GMAO potential vorticity for vortex edge (plots by Michelle Santee and Nathaniel Livesey)

MLS Cloud Ice Water Content (IWC) Data

- > MLS IWC appears qualitatively correct, based on comparisons with
 - (a) AIRS 'window' radiances (b) MODIS cloud optical depth, eff. radius
 - (c) AMSU-B IWP, (d) ECMWF analyses (e) operational OLR
- ➤ Monthly-mean MLS IWC is thought quantitatively correct to a factor of 2, limited mainly by assumptions on ice particle size distribution
- ➤ Images below compare January means of IWC at 150 hPa from (a) MLS, (b) ECMWF analyses and (c-f) GCM climatologies

from J-F Li et al., GRL, vol. 32, L14826, 2005

MLS Upper Trop Data: 18-24 Sep 05 Weekly Map + GEOS-CHEM model for same time (from Qinbin Li)

white contour is GMAO tropopause PV; black is MLS cloud ice indicative of deep convection (plots by Jonathan Jiang)

MLS Upper Trop Data: 18-24 Sep 05 Weekly Map + GEOS-CHEM model for same time (from Qinbin Li)

white contour is GMAO tropopause PV; black is MLS cloud ice indicative of deep convection (plots by Jonathan Jiang)

MLS Data Product Summary

X Y		Priorities for Version 2 data			
data		green indicates highest overall priorities			
product	Status of Version 1.51 data	blue indicates intermediate overall priorities			
product		violet indicates low overall priority			
BrO	not useful	produce useful product			
CH ₃ CN	not produced as standard product	use better forward model, produce as standard product			
CIO	validated for use per documentation	fix negative bias (~0.3 ppbv) at lowest altitudes			
CO	problems in some regions	improve quality of upper trop data, fix vert. osc. in stratosphere			
GPH	validated for use per documentation	fix high bias in 100 hPa reference level			
H ₂ O	validated for use per documentation	increase upper trop vertical grid to 12 levels per decade P			
HCI	validated for use per documentation	fix small negative biases in winter vortex; extend vertical range			
HCN	problems in some regions	use better a priori and forward model to improve product			
HNO ₃	validated for use per documentation	if ~30% high-bias relative to IR is traced to MLS, fix it			
HO ₂	validated for use per documentation	choose better parameter for smoothing versus precision			
HOCI	problems in some regions	extend vertical range			
ice	unvalidated, but thought useful	improve expected accuracy and vertical range; produce IWP			
N ₂ O	validated for use per documentation	improve convergence of retrievals in lowermost stratosphere			
O ₃	validated for use per documentation	improve quality of data in upper troposphere			
ОН	validated for use per documentation	improve vertical resolution in mesosphere; improve lower strat product if further investigations on v1.5 indicate this needed			
RHi	problems in some regions	improve, by using better vertical resolution of V2 H ₂ O and T			
Т	validated for use per documentation	increase upper trop vertical grid to 12 levels per decade P			
SO ₂	not in V1.51, but produced 'off-line'	produce as standard product			

MLS Summary

- Instrument is performing excellently overall
 - 1-2% radiometric calibration accuracy
- High 'duty cycle' in producing good science data
 - 98% overall since instrument operations stabilized on 11 Dec 2004
- > All Level 2 geophysical data for all of mission are publicly available
 - Essential that users be familiar with MLS Data Quality Document
- > First phase of data validation has been completed
 - Overview for 7 products in Froidevaux et al., IEEE Aura issue paper
 - Additional results in Sep 2005 Aura Validation Meeting presentations
- Scientific results are starting to be produced
 - Reprints/preprints of 9 GRL papers available at http://mls.jpl.nasa.gov

Backup Charts

MLS BrO data

- BrO is the most difficult MLS stratospheric measurement
 - Averaging (e.g., monthly zonal means) is required to obtain useful S/N
 - MLS measures two BrO spectral lines, at 650.2 and 624.8 GHz
 - Examples of measured and fitted
 650 GHz BrO line are shown at right
- Version 1.51 BrO is not useful
 - Oscillations in v1.5 retrievals
 - Version 2 will produce a useful product
- An 'offline' retrieval is now producing useful data
 - Mission-average results are shown at right, compared with v1.5 and SLIMCAT model

650 GHz BrO line, 30-40 km tan ht

Single day global average (left) and ±20° latitude mission average (right)

(figures by Nathaniel Livesey)

MLS Upper Trop Data: 18-24 Sep 05 Weekly Map + GEOS-CHEM model for same time (from Qinbin Li)

white contour is GMAO tropopause PV; black is MLS cloud ice indicative of deep convection (plots by Jonathan Jiang)

